Landon Noll looking up Fremont Peak Observatory 0.8m telescope Leonid 2001 meteor squall count at Fremont Peak

2^21701-1 is prime

[chongo's home] [Astronomy] [Mathematics] [Prime Numbers] [Programming] [Technology] [contacting Landon]


Discovered by Landon Curt Noll and Laura Nickel (now Ariel Glenn) on 30 Oct 1978 using a Cyber 174. This number is the 25th Mersenne prime. As a result of this discovery, 221700*(221701-1) was shown to be a perfect number.

For the English name of this prime, see M21701.


448679166119043334794951410361591778727209023729388613010364804475127856
091580536371620183959201831086891496139730355336211345516747152878800071
343453471946810257320569398254237235217504529801272150842995272668757068
920072627984688251856815321429857206372902993137263444632574164493445098
351024588167890163949458936967051685024361802322595516726032953891863644
370456813506975908621980471189012253526096503315606246416805293609502763
225195411993787816118879503680670654670945706027039339445087959180179736
113267982743384039648254487452704343932588659353118262702812913017675373
620735604717067960180869861881923054773082631430336893094024011160231842
187398617931733816742936240390801464465331678931424034416262439863548298
681529638568560976139813700085452909021788527601812675169166661891966528
892724054575480157275832239363896906239482686297384065953425368817706211
940988842990422225102051989074276512695908664890208493315931835447303784
386736199054410756196653620940877004175834722042393357617712606150632396
871360582180148553761288096481090253284446920609811491718531226232144903
151992703476798402506504466243611586327126073718204410761290405760761564
139819664433841749359455575892695505513844442496417385893264310623502442
597498884954275611131381253735467495710892129770555341053063176680365254
501156199947047030809750018310390963281701931486716866592203695883622915
919809638402511820848390456430525809458761986972542352947185837167881659
762285573752842609723773462446853236203269278121288691228046449177079431
863844760577118105582286531205728018099382507023117893201429792131750687
465985253431776947579925010154034590557560961501317963693425717129169735
471664746988565921326127172442496858615424105976103547295501253805844971
090564639919264483572232090088277647132202284397757572307555166586140282
929609475227094567511997522684243830841903167699758289694081615129297311
661887746319739426130035053280305284359298619430288146472243934096043321
299157094797164800017511529010477300220992264963936226333454050093611469
551563389634481137856461309799339035379297516197686695505630024237061612
366915362995773054421160559104626824057283049330226956348760335479181171
767044316513727297536114852079572830976077659331692529138612877268338300
007559071684963736432018866272260591868249870461589502801214803101062208
217608651205629204397566580811536177263527091318013871586725598473961011
785486552173088901587886093243264279191781217083260426698576752827096096
779295327807380600017055574112385649459728735921101312391161744629474242
794027578530736502060580720891390808133815521202378891769590327255321879
818063901889766119669233837800805895711803041279537634268724588940031764
407334481307843207608582503577201636973081518846972691730480391423511164
600093411354656825597954514070657571647126828926843403999279968415403789
437874392343825455622539733000039772914979455803684686423137847235539529
117541151083852900548655637845231613259111843384039750925611825414884470
597441712363488652928979195070962474324857427580967098521325532436870880
026366373568836472092813844664683486614735394776761147139523905742838711
386436089276896462702654362270723613615569693260269725551377958061315120
783963923811171630214883197191229539672418496500356865168976365328298294
135594382710789096480125468181558306706497310259245610520795183655116913
159103595495780985420218508588601956949766303513660742781294511017929376
440855043952755898523880641386024393469095690313812702728332056948142234
113344235659774538875423953534853015462848353277020068736893276116304379
664911400779518401549725902434165123805876099001114708257673106769394419
428268344276129977568923406692034087436592244666337232125966504172497308
252151183035770112727685812933713661483927785323355731225429054723945420
699199856117326244823476469809308055860070819762610030979631988128828737
826213774639266687864982049224478021366073985525267662272051243100080566
329193635531949667170567094466908090536250206572184198365476246185953753
520390187054490629590370389252845566751163611682372799222079207947031170
759219512957077108737333179314331109235314057194163652409075181187940967
754623244234342503717114209475535715559084657925806450898706151118659335
538090035527069944997487069178998890828912250162577534532297059063974830
968364596776407507010511276491368155114450216775684148263040093943008537
622401030735436160732971096790978525911737213760340384039037973260842648
509096229242651418406848837986951238985306017136279179345812060835283733
693719528557879863681940899091530377603116837305843293842674921895108842
297539039068089889935232594376069019440398388233152254887118713555303346
718797032874936121710188907200477912199830065756905502275432469017347490
518767939802409305464476555154058606155661823395685005260806853580569160
788772184415359287162675604181325951025175229289813538330740672469331115
708732953318155017257712413836986051058022867689248613827416522711795380
646257788142887374021012200756942698142409348933791136128063064100451577
016096715175437874425115242031212930232605983756101369322879244684735696
268932928639595066115591815142002936254786349652301876009932048607367479
210560143596521966069893253207550823569016306692406886855051744455157391
510171856964015828071734315804816271224232926412089910712229530383437665
419250549717379591698692923756450571517275434701062065311357351541361151
443000158730804485703555961373213800627488813320314721428230249495100224
093701777129942352897027904902558269414417743216187725764552982506199883
549556147632007938117289972044775976380527925108782257456634947037013925
746255525289086815539261162521582439539642936571714145813418235473464680
742897726459461048411808013336215121505986255941954016019333689732920909
454359533018752028283228481386638718225305167905871444513391794112033281
348843278922526211829018002446309796098768133742812029359981284016339591
083878810709763391955847574020994142243215395434760196048749757202301277
031727328614477186919610989759423327526331670635129601127001540752093821
555516955032826893294297893465031763510075286098417437360840424080940158
509109646184828056496402693941650067602103708179828504955718361590057099
179191497337352789143640204638426027263754875276434149756920202000793462
556666151665152582919393134339122226146212420141533650372868336629211862
904235477896637837854678930126380410821437854873988664879923411799485043
386677812559454134724652462311948814013160716284272817130422478691856312
001923336989669335443616293913110417309565016946627545588756443451912692
79600693551809271956450264294092857410828353511882751
[back]

M(21701) made international news when found by high school students Curt Landon Noll (now Landon Curt Noll) and Laura Nickel (now Ariel T. Glenn) using the California State University Cyber 174 on Halloween Eve in 1978. Note that Noll had previously developed a wide collection of "ASCII bats" (e.g., /\../\ /\oo/\ etc.) which have become part of his personal trademark.



Valid HTML 4.01!

© 1994-2013 Landon Curt Noll
chongo (was here) /\oo/\
$Revision: 7.3 $ $Date: 2012/05/14 09:18:27 $