Landon Noll looking up Fremont Peak Observatory 0.8m telescope Leonid 2001 meteor squall count at Fremont Peak

571305*2^7701 +/- 1 are twin primes

[chongo's home] [Astronomy] [Mathematics] [Prime Numbers] [Programming] [Technology] [contacting Landon]


This set of twin primes was discovered by Landon Curt Noll, Joel Smith, John Brown, Bodo Parady, Gene Smith and Sergio Zarantonello using an Amdahl 1200.

Twin primes are primes of the form p and p+2, i.e., they differ by two. It is conjectured, but not yet proved, that there are infinitely many twin primes.


974685787280748250136964278717170326745226759408566364572443860565040101
057044937643210490968897468206787726916687357879138815165978863868206055
092253653389315547293702640548449089148022632285155376205098215095826909
992369414730584998771597599153283958586123407705388329598749725042363796
705644264497200890707629097323753606616853317874498764237903296704080266
859258195257877475327194595332344909869615095759074206095828897984932119
821861902557489896207808986537030801213663379264376299571289600674226389
156460743336007251220691922955737849169125715963081000653910767618924020
455725694916393182012467010511273872304045769576257865359597588111359676
472552458294426023185777828375129032000250061112213090692644755016253870
258525858848918997721255844120881230212675243902911163675147834656645447
659380258491660308538639969906108233402133089008089252421569935872021533
322941595957442735363475370847045957216579774516921651033163445811749234
351946075700525355932354279458874102820937034088204716211140221037340791
172742950942141943648315486870281751191786201946231115431705309847108698
238379031148268026423954187405061497129655753653376288581405086721259482
660706736664944342287849767973839349670564552951765979460732419462504507
358080539746669059655830937494708479730054313621617189247797635255742419
133593019962753644863760844472022358915127987314918465338463741338265250
885719665031209435203390374835216636305352291173101042352349317731028095
169039340601559766933762028602150501262672611950864244473869699056247533
408228804894723893188955966977325266791309959447622997776000631493784398
168211435457094924631335894307402648136753398947989043940722350216278140
335235974776697534732187500593831496265577966719779933695540371078521902
308189560345977745980719440911581156140254433577449492379498147112598056
976117993775861695307682342078618531056447493176656639971027085474996525
219945549700657513901690301957808958146090517606891201921901504155141221
884075327249180803463570651728610033008851477133685249174780310416009942
283974045824906457025865188252290540691347198667502819893423901833001585
475596616770394494567520856386011033942153195875863416659810298442958956
357761012470550289469832109220206580673130134488353995737711934934679176
411229906582719155791542688942911711436500658408607940305018602832436399
92558366825497231359

974685787280748250136964278717170326745226759408566364572443860565040101
057044937643210490968897468206787726916687357879138815165978863868206055
092253653389315547293702640548449089148022632285155376205098215095826909
992369414730584998771597599153283958586123407705388329598749725042363796
705644264497200890707629097323753606616853317874498764237903296704080266
859258195257877475327194595332344909869615095759074206095828897984932119
821861902557489896207808986537030801213663379264376299571289600674226389
156460743336007251220691922955737849169125715963081000653910767618924020
455725694916393182012467010511273872304045769576257865359597588111359676
472552458294426023185777828375129032000250061112213090692644755016253870
258525858848918997721255844120881230212675243902911163675147834656645447
659380258491660308538639969906108233402133089008089252421569935872021533
322941595957442735363475370847045957216579774516921651033163445811749234
351946075700525355932354279458874102820937034088204716211140221037340791
172742950942141943648315486870281751191786201946231115431705309847108698
238379031148268026423954187405061497129655753653376288581405086721259482
660706736664944342287849767973839349670564552951765979460732419462504507
358080539746669059655830937494708479730054313621617189247797635255742419
133593019962753644863760844472022358915127987314918465338463741338265250
885719665031209435203390374835216636305352291173101042352349317731028095
169039340601559766933762028602150501262672611950864244473869699056247533
408228804894723893188955966977325266791309959447622997776000631493784398
168211435457094924631335894307402648136753398947989043940722350216278140
335235974776697534732187500593831496265577966719779933695540371078521902
308189560345977745980719440911581156140254433577449492379498147112598056
976117993775861695307682342078618531056447493176656639971027085474996525
219945549700657513901690301957808958146090517606891201921901504155141221
884075327249180803463570651728610033008851477133685249174780310416009942
283974045824906457025865188252290540691347198667502819893423901833001585
475596616770394494567520856386011033942153195875863416659810298442958956
357761012470550289469832109220206580673130134488353995737711934934679176
411229906582719155791542688942911711436500658408607940305018602832436399
92558366825497231361
[back]


Valid HTML 4.01!

© 1994-2013 Landon Curt Noll
chongo (was here) /\oo/\
$Revision: 7.3 $ $Date: 2012/05/14 09:18:27 $