|
||
663777*2^7650 +/- 1 are twin primes |
||
[chongo's home] [Astronomy] [Mathematics] [Prime Numbers] [Programming] [Technology] [contacting Landon] |
This set of twin primes was discovered by Landon Curt Noll, Joel Smith, John Brown, Bodo Parady, Gene Smith and Sergio Zarantonello using an Amdahl 1200.
Twin primes are primes of the form p and p+2, i.e., they differ by two. It is conjectured, but not yet proved, that there are infinitely many twin primes.
502908561850540797776883130327527538204869251813966691543543910095456353 578132440808410869952471600489148794512228999115334135343182808202856188 061430215257402635588520187590974091088937366755043437827628445507855666 861168040391271301588465800235482991498941883163151035940744008373323102 526595202063559868898427929911152139184862961352952223533540575721331888 812866945902082970886852227975261311899445761178677044474500285069226578 254677679445635495628695907159780435853262010750316551588411592561164889 789321117608343057796842296237292779317814796452409939577140924295113539 011442089063648979986029107784822351944834872711041938029433270234963666 018677304992341656575197788349597260730430708787744838213239002414250492 377354440517261468364777811898644058001417711300913930194373625719765372 389270488255670969531228281586807064229193503829491602119204206485167208 631279897118347069435121599351045864538870558101474842110136141211616260 994131844690640502259200191015102369282649463509209143634493656227086357 841162693758301704333570284654849944506487098499918794199275647506501997 756613465202196824421508369322582475905991816136643030935259341186155946 729082269530035681974074367035857472700083529708265448755032165432194022 419758243885491329826415288203886876180581368577907699114742883092256794 576458514957593152091376755728032580597231549296626876750636838012832555 178920356925425010646027719171349629093748807945691023379536420214885797 840726208549001066934035161876090376816747409708348193039026888378205675 950640847424817839942585483638194075476741026154426862643105860367799941 967554865156615577286268203844797325214249212138668248538413424187015261 533004499670877679943410191079122732073386196984740858586951171351425012 293779140981751562924466812601658128040299243492428105019629671381030702 405642393080529800066428883912973852153932880568542233241371226713492173 215224783899398896977865360245164741892229063187122792953196717987153711 011991613205450283862700513919771996475670092083642185638822099673363223 136539058306370344381987902544888193697393896661515147053599637554081883 470149247332020333153254773713723147263764649896183093732722412407934294 461128019351644619107672003165796146700959417130698073769566530239076399 078701388925607399163606010427701341975400435487619195106047246919189114 38847
502908561850540797776883130327527538204869251813966691543543910095456353 578132440808410869952471600489148794512228999115334135343182808202856188 061430215257402635588520187590974091088937366755043437827628445507855666 861168040391271301588465800235482991498941883163151035940744008373323102 526595202063559868898427929911152139184862961352952223533540575721331888 812866945902082970886852227975261311899445761178677044474500285069226578 254677679445635495628695907159780435853262010750316551588411592561164889 789321117608343057796842296237292779317814796452409939577140924295113539 011442089063648979986029107784822351944834872711041938029433270234963666 018677304992341656575197788349597260730430708787744838213239002414250492 377354440517261468364777811898644058001417711300913930194373625719765372 389270488255670969531228281586807064229193503829491602119204206485167208 631279897118347069435121599351045864538870558101474842110136141211616260 994131844690640502259200191015102369282649463509209143634493656227086357 841162693758301704333570284654849944506487098499918794199275647506501997 756613465202196824421508369322582475905991816136643030935259341186155946 729082269530035681974074367035857472700083529708265448755032165432194022 419758243885491329826415288203886876180581368577907699114742883092256794 576458514957593152091376755728032580597231549296626876750636838012832555 178920356925425010646027719171349629093748807945691023379536420214885797 840726208549001066934035161876090376816747409708348193039026888378205675 950640847424817839942585483638194075476741026154426862643105860367799941 967554865156615577286268203844797325214249212138668248538413424187015261 533004499670877679943410191079122732073386196984740858586951171351425012 293779140981751562924466812601658128040299243492428105019629671381030702 405642393080529800066428883912973852153932880568542233241371226713492173 215224783899398896977865360245164741892229063187122792953196717987153711 011991613205450283862700513919771996475670092083642185638822099673363223 136539058306370344381987902544888193697393896661515147053599637554081883 470149247332020333153254773713723147263764649896183093732722412407934294 461128019351644619107672003165796146700959417130698073769566530239076399 078701388925607399163606010427701341975400435487619195106047246919189114 38849[back]
© 1994-2013
Landon Curt Noll chongo (was here) /\oo/\ $Revision: 8.1 $ $Date: 2022/07/08 00:06:05 $ |